Genericity of infinite entropy for maps with low regularity

نویسندگان

چکیده

For bi-Lipschitz homeomorphisms of a compact manifold it is known that topological entropy always finite. manifolds dimension two or greater, we show that in the closure space homeomor- phisms, with respect to either H older or Sobolev topologies, entropy generically infinite. We also prove versions C1-Closing Lemma in these spaces. Finally, give examples infinite which are and/or every exponent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-regularity Schrödinger Maps

We prove that the Schrödinger map initial-value problem { ∂ts = s×∆xs on R × [−1, 1]; s(0) = s0 is locally well-posed for small data s0 ∈ H σ0 Q (R ; S), σ0 > (d+ 1)/2, Q ∈ S.

متن کامل

Entropy Estimate for Maps on Forests

A 1993 result of J. Llibre, and M. Misiurewicz, (Theorem A [5]), states that if a continuous map f of a graph into itself has an s-horseshoe, then the topological entropy of f is greater than or equal to logs, that is h( f ) ? logs. Also a 1980 result of L.S. Block, J. Guckenheimer, M. Misiurewicz and L.S. Young (Lemma 1.5 [3]) states that if G is an A-graph of f then h(G) ? h( f ). In this pap...

متن کامل

Low Regularity Classes and Entropy Numbers

We note a sharp embedding of the Besov space B∞ 0,q(T) into exponential classes and prove entropy estimates for the compact embedding of subclasses with logarithmic smoothness, considered by Kashin and Temlyakov.

متن کامل

Entropy of infinite systems and transformations

The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...

متن کامل

Arens regularity of bilinear maps and Banach modules actions

‎Let $X$‎, ‎$Y$ and $Z$ be Banach spaces and $f:Xtimes Y‎ ‎longrightarrow Z$ a bounded bilinear map‎. ‎In this paper we‎ ‎study the relation between Arens regularity of $f$ and the‎ ‎reflexivity of $Y$‎. ‎We also give some conditions under which the‎ ‎Arens regularity of a Banach algebra $A$ implies the Arens‎ ‎regularity of certain Banach right module action of $A$‎ .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annali della Scuola normale superiore di Pisa. Classe di scienze

سال: 2021

ISSN: ['0391-173X', '2036-2145']

DOI: https://doi.org/10.2422/2036-2145.201807_004